Single-Doppler Observations of a West African Squall Line on 27-28 May 1981 during COPT 81: Kinematics, Thermodynamics and Water Budget

1990 ◽  
Vol 118 (9) ◽  
pp. 1826-1854 ◽  
Author(s):  
Frank Roux ◽  
Sun Ju
2020 ◽  
Vol 148 (4) ◽  
pp. 1691-1715
Author(s):  
Richard H. Johnson ◽  
Paul E. Ciesielski

Abstract The West African summer monsoon features multiple, complex interactions between African easterly waves (AEWs), moist convection, variable land surface properties, dust aerosols, and the diurnal cycle. One aspect of these interactions, the coupling between convection and AEWs, is explored using observations obtained during the 2006 African Monsoon Multidisciplinary Analyses (AMMA) field campaign. During AMMA, a research weather radar operated at Niamey, Niger, where it surveilled 28 squall-line systems characterized by leading convective lines and trailing stratiform regions. Nieto Ferreira et al. found that the squall lines were linked with the passage of AEWs and classified them into two tracks, northerly and southerly, based on the position of the African easterly jet (AEJ). Using AMMA sounding data, we create a composite of northerly squall lines that tracked on the cyclonic shear side of the AEJ. Latent heating within the trailing stratiform regions produced a midtropospheric positive potential vorticity (PV) anomaly centered at the melting level, as commonly observed in such systems. However, a unique aspect of these PV anomalies is that they combined with a 400–500-hPa positive PV anomaly extending southward from the Sahara. The latter feature is a consequence of the deep convective boundary layer over the hot Saharan Desert. Results provide evidence of a coupling and merging of two PV sources—one associated with the Saharan heat low and another with latent heating—that ends up creating a prominent midtropospheric positive PV maximum to the rear of West African squall lines.


2007 ◽  
Vol 22 (5) ◽  
pp. 1016-1030 ◽  
Author(s):  
Jon M. Schrage ◽  
Andreas H. Fink

Abstract The West African squall line is a key quasi-linear storm system that brings much of the precipitation observed in the data-poor Sudanian climate zone. Squall lines propagate at a wide range of speeds and headings, but the lack of operational radar stations in the region makes quantifying the propagation of the squall lines difficult. A new method of estimating the propagation rate and heading for squall lines is proposed. Based on measurements of the time of onset of precipitation (OOP) at a network of rain gauge stations, an estimate of the propagation characteristics of the squall line can be inferred. By combining estimates of propagation rate with upper-air observations gathered at a nearby radiosonde station, the impact of various environmental factors on the propagation characteristics of West African squall lines is inferred. Results suggest that the propagation speed for West African squall lines is related to the conditions at midtropospheric levels, where dry air and an enhanced easterly flow favor faster propagation. Northerly anomalies at these levels are also associated with faster propagation. When applied to West African squall lines, the correlations between these environmental factors and the speed of propagation are significantly higher than those of methods developed for mesoscale convective systems in other parts of the world.


2010 ◽  
Vol 115 (D19) ◽  
Author(s):  
R. Meynadier ◽  
O. Bock ◽  
F. Guichard ◽  
A. Boone ◽  
P. Roucou ◽  
...  

2016 ◽  
Vol 144 (5) ◽  
pp. 1923-1934 ◽  
Author(s):  
M. Provod ◽  
J. H. Marsham ◽  
D. J. Parker ◽  
C. E. Birch

Cold pools are integral components of squall-line mesoscale convective systems and the West African monsoon, but are poorly represented in operational global models. Observations of 38 cold pools made at Niamey, Niger, during the 2006 African Monsoon Multidisciplinary Analysis (AMMA) campaign (1 June–30 September 2006), are used to generate a seasonal characterization of cold pool properties by quantifying related changes in surface meteorological variables. Cold pools were associated with temperature decreases of 2°–14°C, pressure increases of 0–8 hPa, and wind gusts of 3–22 m s−1. Comparison with published values of similar variables from the U.S. Great Plains showed comparable differences. The leading part of most cold pools had decreased water vapor mixing ratios compared to the environment, with moister air, likely related to precipitation, approximately 30 min behind the gust front. A novel diagnostic used to quantify how consistent observed cold pool temperatures are with saturated or unsaturated descent from midlevels [fractional evaporational energy deficit (FEED)] shows that early season cold pools are consistent with less saturated descents. Early season cold pools were relatively colder, windier, and wetter, consistent with drier midlevels, although this was only statistically significant for the change in moisture. Late season cold pools tended to decrease equivalent potential temperature from the pre–cold pool value, whereas earlier in the season changes were smaller, with more increases. The role of cold pools may therefore change through the season, with early season cold pools more able to feed subsequent convection.


2012 ◽  
Vol 02 (01) ◽  
pp. 14-22 ◽  
Author(s):  
Benjamin Kouassi ◽  
Adama Diawara ◽  
Yves K. Kouadio ◽  
Guy Schayes ◽  
Fidèle Yoroba ◽  
...  

2011 ◽  
Vol 68 (5) ◽  
pp. 1114-1123 ◽  
Author(s):  
Jasmine Cetrone ◽  
Robert A. Houze

Abstract The anvil clouds of tropical squall-line systems over West Africa have been examined using cloud radar data and divided into those that appear ahead of the leading convective line and those on the trailing side of the system. The leading anvils are generally higher in altitude than the trailing anvil, likely because the hydrometeors in the leading anvil are directly connected to the convective updraft, while the trailing anvil generally extends out of the lower-topped stratiform precipitation region. When the anvils are subdivided into thick, medium, and thin portions, the thick leading anvil is seen to have systematically higher reflectivity than the thick trailing anvil, suggesting that the leading anvil contains numerous larger ice particles owing to its direct connection to the convective region. As the leading anvil ages and thins, it retains its top. The leading anvil appears to add hydrometeors at the highest altitudes, while the trailing anvil is able to moisten a deep layer of the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document